

Virginia Water Environment Association

2012 Industrial Waste and Pretreatment Seminar

Charlottesville, Virginia

March 5, 2012

Wastewater Reuse Considerations at a Petroleum Refinery

Presented by Lucy Pugh, AECOM

Refinery Located in Midwestern United States

Owned by three cooperative associations to provide fuel to farmers in the Midwest United States

Started in 1932 as a 6,000 bpd refinery

Currently 85,000 bpd

Receives crude oil by pipeline from North American sources

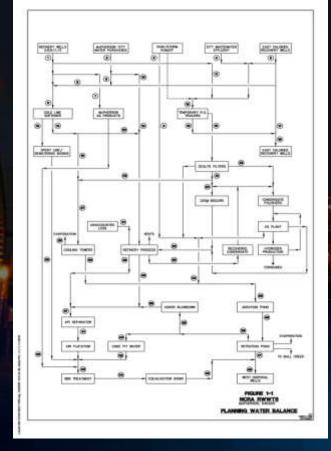
Main fuel products are gasoline and diesel

FUN FACTS

What does oil refining have to do with basketball???

- Members from the refinery's basketball team won a gold medal at the 1936 Olympics in Berlin!
- 1936 was the first year basketball was played as an Olympic sport, and was the same year Jesse Owens won his gold medals.

Presentation Overview


Background

Water sources and treatment
 Wastewater sources and characteristics
 Existing treatment facilities

Refinery wastewater reuse experience

Refinery reuse approach

First Step – Water and Mass Balance

Identify water sources and points of entry to process

Identify wastewater sources and general characteristics

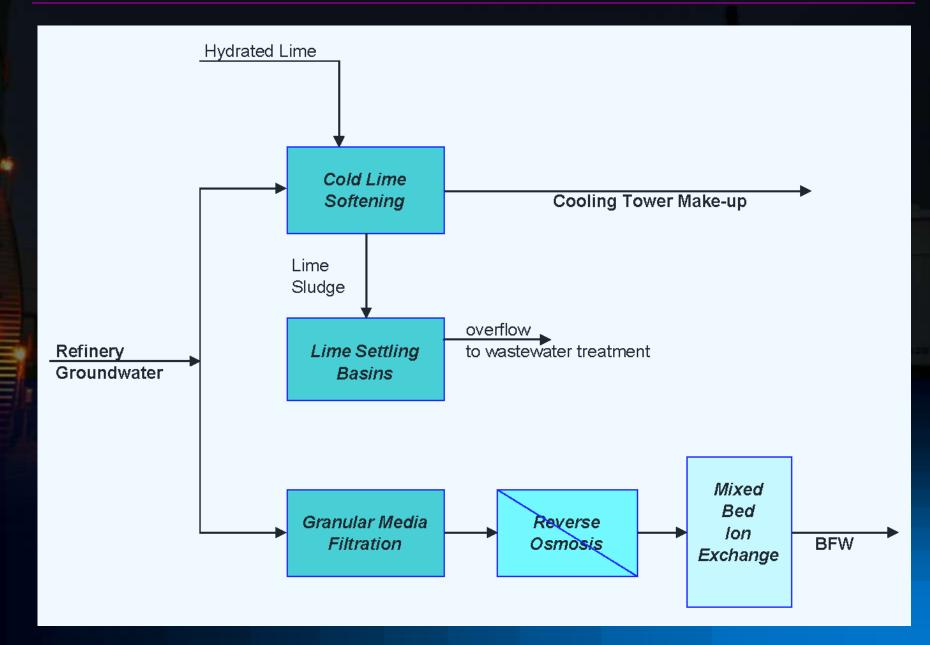
Collect data to develop a water flow and mass balance around the refinery

Process Water Sources and Treatment

Water Sources

water

3,100 gpm of water use during summer months


Refinery water sources:
 Groundwater wells
 High chlorides
 Medium chlorides
 Purchased municipal

Current Feed Water Characteristics

Parameter	mg/L	Parameter	mg/L
TDS	798	Calcium as CaCO ₃	386
TSS	6	Magnesium as CaCO ₃	56
COD	10	Sodium	40
BOD ₅	2	Barium	0.28
TKN	0.2	Iron	0.19
Ammonia-N	0.1	Manganese	0.044
Phosphorus	0.5	Strontium	0.62
Carbonate Alkalinity	20	Chloride	135
Bicarbonate Alkalinity	300	Sulfate	23
Silica	20		

Process Water Treatment

Wastewater Characteristics and Treatment

Desalter Blowdown -Organic load, O&G -Inorganic load

Sour Water -Pretreat to remove H₂S -Pretreat to remove NH₃ -Organic load

Scrubber Blowdown -Sulfites -Dissolved & suspended solids Spent Caustic -Sulfur compounds -Organic load

Oily Sludges -O&G (from desalters) -TDS and TSS (scrubbers, etc.) **Process Water Treatment Wastes** -Lime softening sludges -lon exchange waste regenerant -Filter and RO reject/CIP waste **Cooling Tower Blowdown** -Dissolved solids -Suspended solids **Boiler Blowdown** Dissolved solids

Current Wastewater Treatment

Water and Wastewater Characterization

- Data existed for water sources and wastewater streams, but did not include all the constituents of interest for reuse
- Implemented sampling program to characterize individual water sources and wastewater streams

Constructed mass balance

Used mass balance to project future wastewater characteristics

New sources of crude oils
Impacts to TDS and SS in raw wastewater

Re-routing internal wastewater streams
 RO reject will be re-directed to deep wells

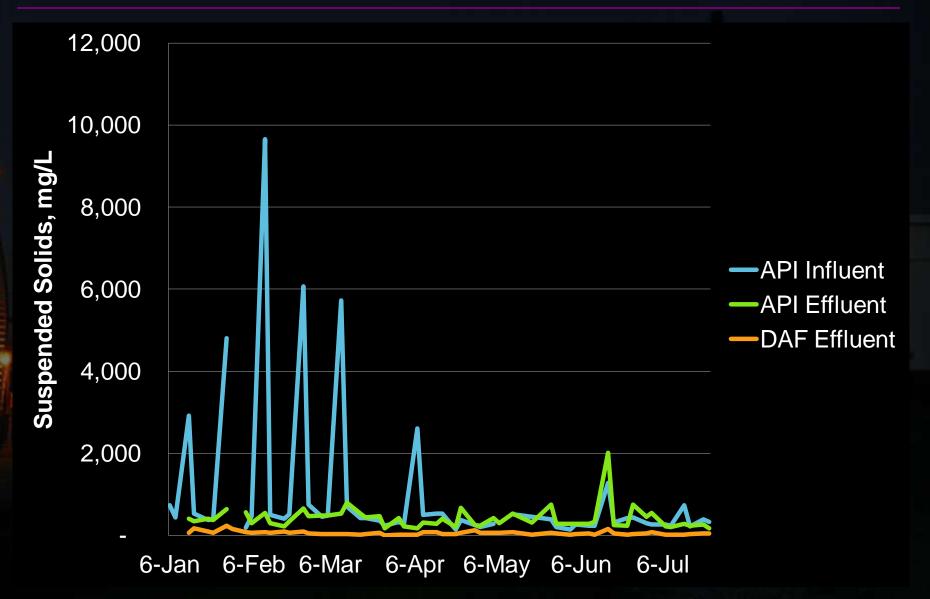
Wastewater Treatment Upgrades

Wastewater Treatment Upgrades

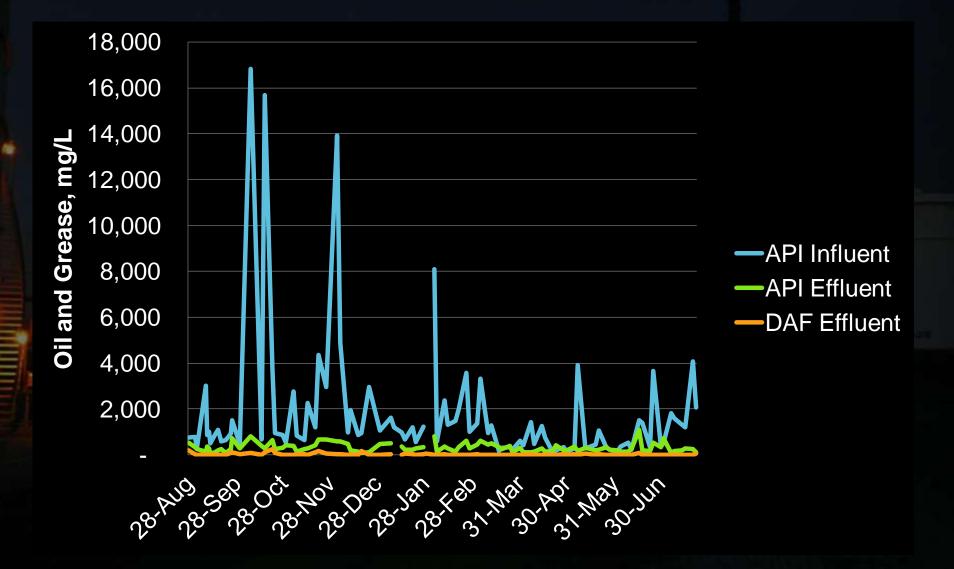
Upgrades implemented to improve treatment system performance in preparation for reuse

New wastewater collection sump and gravity sewer to new lift station

Replaced API separator and DAF clarifier
 Duplicate, 100% capacity parallel trains
 230 m³/hr each (1,000 gpm)


© Oil and sludge storage facilities

API-DAF Replacement Project

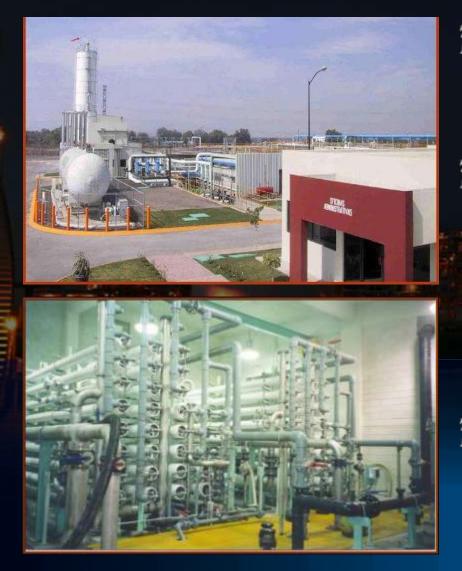


API and DAF Performance – Suspended Solids

API and DAF Performance – Oil and Grease

Refinery Wastewater Effluent Characteristics

Parameter	mg/L	Parameter	mg/L
TDS	2,190	Calcium as CaCO ₃	610
TSS	29	Magnesium as CaCO ₃	116
COD	100	Sodium	387
TKN	6.8	Barium	0.48
Ammonia-N	2.6	Iron	3.8
Phosphorus	0.97	Manganese	0.11
Carbonate Alkalinity	20	Strontium	2.4
Bicarbonate Alkalinity	323	Chloride	703
Silica	45	Sulfate	228



Previous Refinery Wastewater Reuse Experience

Wastewater Reuse at Pemex Refineries, Mexico

Documented by Falcón and Romano (2006)

Preserve limited water resources

Minimize discharge of pollutants to waterways

Similar, but unique approaches taken at four refineries

Pemex Refinery Wastewater Reuse Features

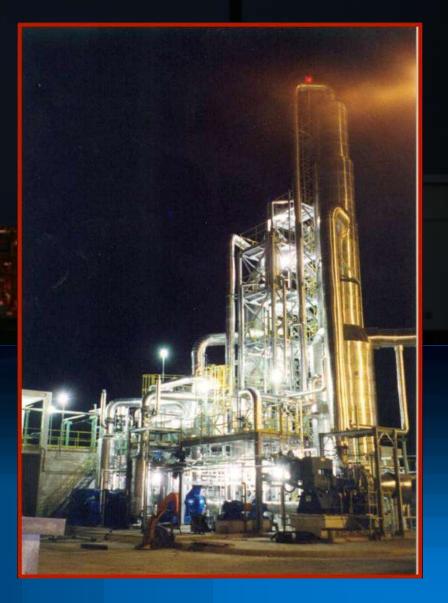
© DAF and biological treatment

- **Chlorination for control of microbial growth**
- **Warm or cold lime softening**
- **Granular media filtration and GAC**
- **Reverse osmosis**
- Municipal effluent used at two refineries
- **Zero liquid discharge achieved at two refineries**

Low Pressure Membrane Filtration Pilot Testing

I LPMF evaluated for Refinery Four

- Side-by-side testing of four LPMF configurations
 - Flat sheet
 - Inside-out hollow fiber pressure membranes
 - Outside-in hollow fiber vacuum membranes
 Spiral wound


Outside-in hollow fiber vacuum membranes selected

Lessons Learned

TDS requires careful control
 Scaling
 Corrosion

Combining lime softening and reverse osmosis

Optimizing anti-scalants is critical

Lessons Learned

iii Oil removal and biological processes must be robust

- Residual oils and organics can foul downstream processes
- Contribute to biological growth in tankage, piping, process equipment

Provide disinfection at multiple points in treatment train

Consider compatibility with membrane processes

May need to provide residual disinfectant removal

Lessons Learned

- Low pressure membrane filtration provides effective pretreatment to reverse osmosis
 - Outside-in hollow fiber vacuum membranes selected based on pilot testing
 - Over ten years of operating experience
 - Superior to granular media filtration and GAC

Wastewater Reuse Approach

Considerations for Wastewater Reuse

- **Maximize water recovery**
- Two-train approach
 Common processes
 Redundancy
 Reliability

- Refinery wastewater and high-chloride well water used for BFW
- X Low-chloride well water used for cooling tower make-up
- Deep well disposal of concentrated waste streams

Train 1 BFW Treatment Requirements

Parameter	Feed, mg/L	Product, mg/L	Parameter	Feed, mg/L	Product, mg/L
TDS	3,508	40	Calcium	683	4.5
TSS	30	5	Magnesium	142	0.5
COD	66	10	Sodium	556	6.5
BOD ₅	10	2	Barium	0.6	0.01
TKN	6	0.2	Iron	3.8	0.3
Ammonia-N	2.3	0.1	Manganese	0.04	0.007
Phosphorus	1.1	0.5	Strontium	3.2	0.01
Carbonate Alk.	33	20	Chloride	1,467	6.1
Bicarbonate Alk.	161	20	Sulfate	212	1.8
Silica	33	2.1	Oil & grease	5	0

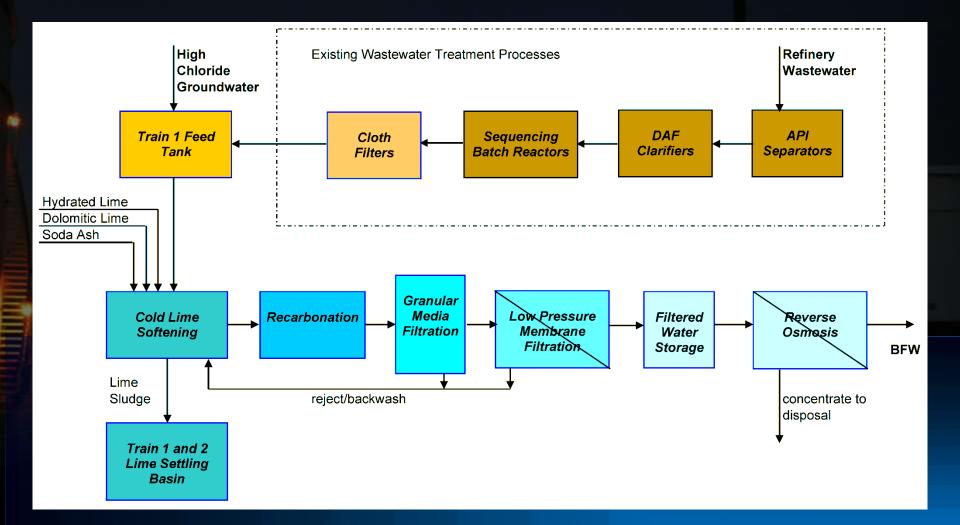
Train 2 Cooling Tower Make-up Treatment Requirements

Parameter	Feed, mg/L	Product, mg/L	Parameter	Feed, mg/L	Product, mg/L	
TDS	800	800	Calcium	386	101	
TSS	6	6	Magnesium	56	8	
COD	10	10	Sodium	40	160	
BOD ₅	2	2	Barium	0.3	0.06	
TKN	0.2	0.2	Iron	0.2	0.05	
Ammonia-N	0.1	0.1	Manganese	0.04	0.005	
Phosphorus	0.5	0.5	Strontium	0.6	0.21	
Carbonate Alk.	20	20	Chloride	135	135	
Bicarbonate Alk.	300	52.5	Sulfate	23	21	
Silica	20	19	Oil & grease	5	0	

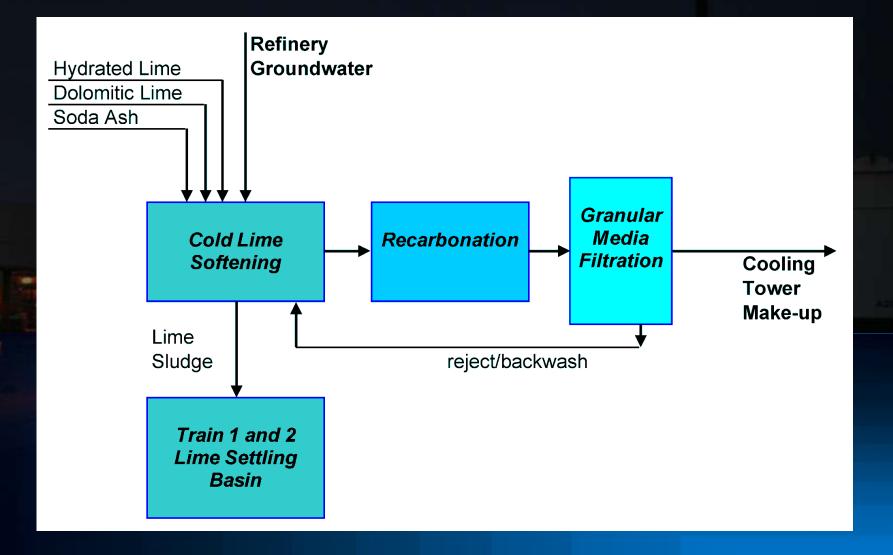
Train 1 BFW Process Alternatives

Lime softening and reverse osmosis Lime softening, LPMF, RO Lime softening removes Ca, Mg, Si and Ba Increases RO recovery rate (70 – 80%) Membrane softening and TDS removal LPMF, RO Increased loading of TSS and hardness/scaling compounds to membranes

Reduced RO recovery rate (55 – 65%)


Expected Cold Lime Softening Performance

Parameter	Feed, mg/L 🖕	Effluent, mg/L	
TSS	<100	<20	
TDS	3,500	3,500	
Calcium as CaCO ₃	690	35	
Magnesium as CaCO ₃	140	10	
Barium	0.5	0.05	
Silica	35	<25	


Expected LPMF Performance

Parameter	Feed, mg/L	Effluent, mg/L	
COD	80	<30	
BOD ₅	10	<3	
TSS	30	<2	
Color	150	<20	
Silt density index	Infinite	<3.0	
Oil & grease	10	<2	
ТРН	5	<1	

Train 1 BFW Treatment

Train 2 Cooling Tower Make-up Treatment

Conclusions

Refinery wastewater reuse is receiving increased focus for minimizing water use and wastewater discharges

Characterize water sources and wastewater streams

Optimize existing processes
 Oil & grease removal
 Suspended solids

Dissolved organics and nutrients

Construct mass balance and project future characteristics

Build on previous experience

